If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-19x-117=0
a = 10; b = -19; c = -117;
Δ = b2-4ac
Δ = -192-4·10·(-117)
Δ = 5041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5041}=71$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-71}{2*10}=\frac{-52}{20} =-2+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+71}{2*10}=\frac{90}{20} =4+1/2 $
| x^6=244.140625 | | 2-t/3=-1 | | 52+6b=26 | | (-5)x=212,5 | | (3x+2)(2-x)/3=x+1 | | 5(1-x)^2=(x+1)^2 | | x/5+x=51 | | 2/3x^2-3/2x+1=x^2+x | | 5y+5/3=26/3-y | | 5t+6(4+-3)=40 | | 5x-3x(2x-1)=3x | | 3x-5x^2+1=x-7 | | 17x+88=71 | | 10x^2-20x-3=0 | | y=2000/40 | | 3(4-x)^2=27 | | 3(4-x)^2=7 | | 5x/3-x=x/3-5/2 | | 12=6x+1 | | 56-4m=21 | | Y+3y=99+1 | | 30+30+90+90+3y=360 | | 30°+30°+90°+90°+3y=360° | | 9x-(2x-14)=49 | | 2d=5=37 | | f(0)=-5,f(3)=4. | | x-(250+115)=1175 | | (2x+4)²=5 | | 9c-11=21 | | 3(t+2)+4=10 | | 3(2d–9)+5d=105 | | 16x^2=32x |